2024年凸几何与几何分析研讨会主要为增进国内同行在凸几何、几何分析、泛函分析等交叉学科相关领域的学术交流,展示最新研究成果,为促进相互之间交叉研究提供一个交流的平台。
会议时间:2024年11月19日—11月21日
会议地点:浙江科技大学小和山校区
会议承办单位:加拿大28-加拿大28预测
本研讨会由加拿大28
高峰学科和国家自然科学基金进行资助
联系人:李爱军 [email protected]
研讨会日程安排
|
11月20日 |
事 项 |
主持人 |
|
8:50-9:10 |
开幕式 合影(地点:浙江科技大学小和山校区 和风居茶园) |
李爱军 |
|
报告人 |
题 目 |
主持人 |
|
9:10-9:50 |
张高勇 (美国纽约大学) |
Measure Equations, Optimization Problems and PDEs in Convex Geometry |
陶祥兴 (浙江科技大学) |
|
9:50-10:30 |
蒋春澜 (河北师范大学) |
Gelfand and Helly inequality and Von Neumann invariant subspace problem |
黄勇 (湖南大学) |
|
10:50- 11:25 |
熊革 (同济大学) |
John ellipsoid, its generalizations and applications in convex geometry |
吕松军 (常熟理工学院) |
|
11:25- 12:00 |
席东盟 (上海大学) |
The reverse log-Brunn-Minkowski inequality |
马丹 (上海师范大学) |
|
13:30-18:00 |
学术讨论 |
|
告题目及摘要
Measure Equations, Optimization Problems and PDEs in Convex Geometry
张高勇
美国纽约大学
Finding unknown convex geometric objects from their prescribed measurements went back to Minkowski in the 1890s and Aleksandrov and Fenchel in the 1930s. The geometric problems are called Minkowski problems, which require to solve equations of convex geometric measures. The smooth cases of such measure equations are fully nonlinear partial differential equations. Convex geometric optimization problems and variational methods are designed to study these measure equations. There have been revolutionary studies in recent years and a theory of convex geometric measures is emerging. This talk explains the measure equations, optimization problems and PDEs.
张高勇教授简介:现为纽约大学库朗(Courant) 数学研究所教授,美国数学会会士。张高勇教授的主要研究方向是凸几何与几何分析,在几何不等式和几何测度论方面做出了一系列杰出的工作,部分工作发表在Acta Math.、Ann. Math.、JAMS、CPAM、Duke Math. J、JDG 等国际著名期刊上。
Gelfand and Helly inequality and Von Neumann invariant subspace problem
蒋春澜
河北师范大学
In the 1920s, Von Neumann proposed the famous invariant subspace problem: Does every bounded linear operator acting on the infinite dimensional Hilbert space have a non trivial invariant subspace? Gelfand and Helly gave the following result in the 1950s: For operators with a single point spectrum, If the n power of such operators is polynomial growth, the answer to the Von Neumann invariant subspace problem is affirmative. In this report, we extend the depth of Gelfand and Helly inequality, thereby proving that a larger class of operators have non trivial invariant subspaces. The spectrum of this type of operator that may be infinitely set.
蒋春澜教授简介:河北师范大学教授,博士生导师,河北省燕赵学者。曾任河北师范大学校长、中国科学院访问教授、美国波多黎各大学客座教授,长期从事算子代数可约性与强不可约性研究。在无穷维希尔伯特空间算子理论中作出了享有国际声誉的贡献。在PNAS、Adv. Math、J.Funct Anal、Trans. Amer. Math. Soc、IMRN等杂志发表学术论文70多篇。主持完成《国家重点基础研究发展规划》(973计划)项目、教育部重大课题、国家自然科学基金重点项目和国家自然科学基金面上项目十余项。曾获国家教委科技进步奖二等奖、上海市科技进步奖二等奖等。2000年获国务院政府特殊津贴,2003年获河北省自然科学奖一等奖,2013年获教育部自然科学奖二等奖。
John ellipsoid, its generalizations and applications in convex geometry
熊革
同济大学
It is known that there exists a unique ellipsoid of maximal volume inside a convex body (a compact convex set with non-empty interiors) in . This ellipsoid is called John ellipsoid (named after mathematician Fritz John), and has many applications in convex geometry, functional analysis, and optimizations. In this talk, I will present our work on John ellipsoid, including its generalizations and applications in convex geometry. Our research on this topic has been ongoing for over 10 years.
熊革教授简介:同济大学长聘教授,博士生导师。熊革教授解决了凸体几何中的几个公开问题,包括Lutwak-Yang-Zhang关于锥体积泛函极值问题的2,3维情形;由截面确定凸体的Baker-Larman问题的2维情形;最早提出并解决了静电容量的Lp Minkowski问题,完全解决了纽约大学 张高勇教授关于凸体的John椭球与对偶惯性椭球一致性的问题。熊革教授在国际数学的重要期刊JDG, Math. Ann., Adv. Math., IUMJ,IMRN, CVPDE, JFA, CAG, Israel Journal of Mathematics, Discrete and Computational Geometry等上发表论文30余篇。
The reverse log-Brunn-Minkowski inequality
席东盟
上海大学
We established an equivalent form of the log-Brunn-Minkowski conjecture. As an application, we proved the log-Minkowski inequality in the case where one convex body is a zonoid (the inequality part was first proved by van Handel), and we also provided the equality characterization, which turned out to be new.
席东盟教授简介:上海大学加拿大28
数学系教授,上海大学伟长学者。主要研究凸几何与积分几何中的分析问题,尤其是在等周问题与几何测度的Minkowski问题取得了若干成果,包括:在积分几何中引入了并解决了一族平移不变几何测度的Minkowski问题,对应了一族收敛到sigma_k的Monge-Ampere型算子;解决了2维Dar猜想;建立了非对称凸体的log-Brunn-Minkowski不等式。相关成果发表在Comm. Pure Appl. Math.、J. Differential Geom.、Adv. Math.、Math. Ann.、Trans. Amer. Math. Soc.、J. Funct. Anal.等期刊上。2023年获得国家自然科学基金优秀青年基金资助。