加拿大28

【和山数学论坛第418期】浙江大学李奇睿教授学术报告

信息来源:   点击次数:  发布时间:2024-06-04


一、报告题目:A class of optimal transportation problems on the sphere

二、报告人:李奇睿 教授

三、时 间:2024610(周一) 下午 15:00-16:00

四、 点:闻理园 A4-309


报告摘要:In this talk, we discuss a class of optimal transport problems on the sphere, with cost function $c(x,y)=F(d(x,y))$, where d is the spherical distance. We allow that F is a smooth function defined only in a subinterval of $[0,\pi]$, while c takes $-\infty$ at where F is not defined. Under suitable conditions, we show there is an optimal map solving the problem. In particular, if $F(d)=\log (\kappa \cos d -1)$ with $\kappa>1$, or $F(d)=\log\cos d$, then the associated optimal transport problem is respectively equivalent to the refractor problem in reshaping light beams, or the Aleksandrov problem for hypersurfaces with prescribed curvature.


报告人简介:李奇睿,浙江大学数学科学学院研究员,博士生导师。研究方向是完全非线性方程与几何分析。近年来与合作者在Monge最优运输问题,预定曲率问题,几何流等方向取得丰富成果,已在 J. Eur. Math. Soc. J. Differential Geom.Adv. Math.J. Funct. Anal.Trans. Amer. Math. Soc.等国际著名期刊上发表论文近30篇。

 

欢迎广大师生参加! 联系人:李爱军