加拿大28

【和山数学论坛265期】盐城师范学院郭曙光教授学术报告

信息来源:   点击次数:  发布时间:2021-12-22

题目Ordering graphs by their largest (least) A_alpha eigenvalues

主讲人:盐城师范学院  郭曙光 教授

时间:20211226() 8:30~9:15

腾讯会议871 251 058(会议密码:654321

摘要

Let G be a simple undirected graph. For real number  alpha in [0,1].  Nikiforov defined the A_{alpha} matrix of G as A_{alpha}(G)=alpha D(G)+(1-alpha)A(G), where A(G) and D(G) are the adjacency matrix and the degree diagonal matrix of $G$ respectively.

In this talk, we present a sharp upper bound on the largest eigenvalue \rho_{alpha}(G) of A_{alpha}(G) for alpha in [1/2, 1). Employing this upper bound, we prove that: For connected G1 and G2  with n vertices and m edges, if the maximum degree $\Delta(G1)>2alpha(1-alpha)(2mn+1)+2 alpha  and Delta(G1)>Delta(G2), then \rho_{alpha}(G1)>\rho_\alpha(G2)$.

Let lambda_{alpha}(G) denote the least eigenvalue of A_{alpha}(G). For alpha in (1/2, 1), we prove that: For two connected G1 and G2, if the minimum degree delta(G1)<\frac{1}{1-\alpha}-2  and delta(G1)<delta(G2), then lambda_{alpha}( G1)<lambda_{alpha}( G2).

个人简介: 郭曙光,男,博士,江苏省盐城师范学院教授,主要从事代数图论和组合数论的研究,曾被评为江苏省高校“青蓝工程”中青年学术带头人和江苏省“333工程”培养对象,先后主持国家自然科学基金面上项目2项,江苏省自然科学基金面上项目2项,在《J. Number Theory》《Linear Algebra Appl.》《Discrete Math.》等重要学术刊物上发表论文50余篇,出版江苏省高等学校重点教材1部,获江苏省教育科学研究成果二等奖1项。

欢迎广大师生参加! 联系人:龚世才,孙少伟