一、报告题目: Oscillatory Integral and Newton Polyhedron
二、报告人:燕敦验 教授
三、时 间:2019年12月11日(周三)下午15:40---16:40
四、地 点:闻理园A4-305室
五、报告摘要:In this talk, we will introduce a class of oscillatory integral operators with the kernel being smooth function and compact support. Stein and Phong systematacially investigated those operators and obtained the sharp $L^2$ decay estimates. In fact, Stein's results answered an important conjecture which was put by the distinguished mathematician Arnold. That is, the sharp decay estimate is determinated by the Newton polyhedron of the phase function of the oscillatory integral. Finally, we give the sharp $L^p$ decay estimates of the oscillatory integral operators with homogeneous polynomial phases. As a consequence, we also give sharp $L^p$-boundedness of the generalized Fourier transform.
报告人简介:燕敦验,理学博士,中国科学院大学教授,博士生导师,校学术委员会委员,中国科学院大学本科部部长。主要研究方向:调和分析,应用与计算调和分析,主持多项国家自然科学基金面上项目。已在国内外学术期刊上发表研究论文50余篇,与他人合作在国外出版学术专著两部,翻译美国科学院院士、Wolf奖得主Elias M.Stein等人的专著《Fourier Analysis: An Introduction》一部。在国际/国内重要会议上作大会报告和邀请报告20余次。
欢迎广大师生参加! (联系人:郑涛涛)
加拿大28
应用数学研究所
2019年12月9日